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Abstract. In this paper, after a brief mention of the definitions of fractional-1

order derivatives, we present a geometric interpretation of the tangent line2

angle of a polynomial with coefficients of fractional derivative. Then a3

comparison of the divergence of a gradient vector field in normal mode4

with the divergence of a vector field gradient fractions is performed. Fi-5

nally, we show that there is a relationship between fractional derivative of6

polynomials at the tangent points and the order of the fractional deriva-7

tive.8
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1 Introduction12

It is generally known that integer-order derivatives and integrals have clear physical13

and geometric interpretations, which significantly simplify their use for solving applied14

problems in various fields of science.15

However, in case of fractional-order integration and differentiation, which represent16

a rapidly growing field both in theory and in applications to real-world problems, it is17

not so. Since the appearance of the idea of differentiation and integration of arbitrary18

(not necessary integer) order there was not any acceptable geometric and physical19

interpretation of these operations for more than 300 years [2, 10, 15, 5].20

Fractional integration and fractional differentiation are generalizations of notions21

of integer-order integration and differentiation, and include nth derivatives and n-22

fold integrals (n denotes an integer number) as particular cases. Because of this,23

it would be ideal to have such physical and geometric interpretations of fractional-24

order operators, which will provide also a link to known classical interpretations of25

integer-order differentiation and integration.26

Obviously, there is still a lack of geometric and physical interpretation of fractional27

integration and differentiation, which is comparable with the simple interpretations28

of their integer-order counterparts.29
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During the last two decades several authors have applied the fractional calculus in30

the field of sciences, engineering and mathematics (see [9, 4, 11, 6]). Mathematician31

Liouville, Riemann, and Caputo have done major work on fractional calculus, thus32

Fractional Calculus is a useful mathematical tool for applied sciences. Podlubny33

suggested a solution of more than 300 years old problem of geometric and physical34

interpretation of fractional integration and differentiation in 2002, for left-sided and35

right-sided of Riemann-Liouville fractional integrals [13, 1, 7].36

J. A. Tenreiro Machado in 2003, presented a probabilistic interpretation of frac-37

tional order derivative, based on Grunwald –Letnikov definition of fractional order38

differentiation [8].39

In this paper a new geometric interpretation for properties of polynomial’s tangent40

line is defined as an area of a triangle and then the relationship between this area and41

order of differentiation is investigated.42

Finally, it is shown that the area univocally increase or decrease according to43

the increasing of order of fractional derivative, except in the case where the order of44

derivative is equal to 0.5. some application of fractional derivatives in divergence of45

vector field gradient is also illustrated.46

2 Definitions of fractional order derivatives47

A number of researchers in this field have defined the fractional derivatives in different48

ways.[14, 12]49

2.1 The Grunwald-Letnikov definition50

(2.1) GL
a D

α

xf(x) = lim
h→0

1
hα

∑[ x−a
h ]

n=0
(−1)n

(
α
n

)
f(x− nh)

where a = x− nh ⇒ n = x−a
h .51

2.2 The Riemann-Liouville definition52

The Riemann-liouville derivative of order α and with lower limit a is defined as:53

(2.2) RL
a D

α

xf(x)=
1

Γ (n− α)

(
d

dx

)n ∫ x

a

f (τ)
(x− τ)α−n+1 dτ

where n is integer, α is real number and (n− 1) ≤ α < n.54

2.3 The M. Caputo (1967) definition55

Caputo derivatives of order α are defined as:56

(2.3) c
aDα

xf(x) =
1

Γ(n− α)

∫ x

a

f (n)(τ)
(x− τ)α−n+1 dτ,

where n is integer, α is real number and (n− 1) ≤ α < n.57



Interpretation of fractional order derivatives 95

3 Fractional derivatives properties58

3.1 Definitions of Oldham and Spanier (1974)59

The scaling property of fractional derivatives is described by:60

(3.1)
dαf (βx)

dxα
= βα dαf (βx)

d(βx)α .

This makes it suitable for the study of scaling and scale invariance. There is connection61

between local-scaling, box-dimension of an irregular function and order of fractional62

derivative.63

3.2 Linearity64

Fractional differentiation is a linear operation:65

(3.2) Dα (µf(x) + ωg(x)) = µDαf(x) + ωDαg(x),

where Dα denotes any mutation of the fractional differentiation considered in this66

paper.67

3.3 Definitions of K. S. Miller and B. Ross (1993)68

Dαf(x) = Dα1Dα2 . . . Dαnf(x)(3.3)
α = α1+α2+···+αn

αi < 1

This definition of sequential composition is very useful concept for obtaining frac-69

tional derivative of an arbitrary order. The derivative operator can be any definition70

Rimann-Liouville or Caputo.71

4 Geometric and physical interpretation of fractional72

order derivatives73

Geometrical and physical interpretations of integer order derivative and integral are74

defined in a simple way. The fractional order derivative and fractional order integral75

are not yet well established in simple way. In this paper, a simple interpretation76

of fractional order derivative is presented, which is useful in the applications of the77

subject.78

The fractional order derivatives of a polynomial function can be computed by the79

formula80

(4.1) Dα
[
xβ

]
=

Γ(β + 1)
Γ(β + 1− α)

xβ−α,
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where α is the order of derivative and 0 < α < 1. By using the formula given in81

(4.1) and the property (3.2), the fractional derivative values of functions f(x) = x3
82

and g(x) = x4 + x3 at x = 2 were computed and shown in table 4.1 and table 4.283

respectively.84

Table 4.1
Fractional order derivatives Fractional derivative values at

x = 2
m = tan θ

θ = tan−1m
(in radian)

Area of triangle
( 4)

D0.1[f(x)] m0.1 = 8.4512 θ0.1 = 1.4530 4PA0.1B = 3.7865
D0.2[f(x)] m0.2 = 8.9018 θ0.2 = 1.4589 4PA0.2B = 3.5948
D0.3[f(x)] m0.3 = 9.3482 θ0.3 = 1.4642 4PA0.3B = 3.4231
D0.4[f(x)] m0.4 = 9.7866 θ0.4 = 1.4690 4PA0.4B = 3.2698
D0.5[f(x)] m0.5 = 10.2129 θ0.5 = 1.4732 4PA0.5B = 3.1333
D0.6[f(x)] m0.6 = 10.6226 θ0.6 = 1.4769 4PA0.6B = 3.0124
D0.7[f(x)] m0.7 = 11.0111 θ0.7 = 1.4802 4PA0.7B = 2.9062
D0.8[f(x)] m0.8 = 11.3734 θ0.8 = 1.4831 4PA0.8B = 2.8136
D0.9[f(x)] m0.9 = 11.7047 θ0.9 = 1.4856 4PA0.9B = 2.7339
D1.0[f(x)] m1.0 = 12.0000 θ1.0 = 1.4877 4PA1.0B = 2.6667

Table 4.2
Fractional order derivatives Fractional derivative values at

x = 2
m = tan θ

θ = tan−1m
(in radian)

Area of triangle
( 4)

D0.1[g(x)] m0.1 = 25.787 θ0.1 = 1.5320 4PA0.1B = 11.1684
D0.2[g(x)] m0.2 = 27.642 θ0.2 = 1.5346 4PA0.2B = 10.4188
D0.3[g(x)] m0.3 = 29.561 θ0.3 = 1.5370 4PA0.3B = 9.7427
D0.4[g(x)] m0.4 = 31.535 θ0.4 = 1.5391 4PA0.4B = 9.1328
D0.5[g(x)] m0.5 = 33.557 θ0.5 = 1.5410 4PA0.5B = 8.5825
D0.6[g(x)] m0.6 = 35.617 θ0.6 = 1.5427 4PA0.6B = 8.0860
D0.7[g(x)] m0.7 = 37.705 θ0.7 = 1.5443 4PA0.7B = 7.6383
D0.8[g(x)] m0.8 = 39.807 θ0.8 = 1.5457 4PA0.8B = 7.2349
D0.9[g(x)] m0.9 = 41.911 θ0.9 = 1.5469 4PA0.9B = 6.8718
D1.0[g(x)] m1.0 = 44.000 θ1.0 = 1.5481 4PA1.0B = 6.5455

Consider the function f(x)=x3at P (2, 8) we have D1.0[f(x)]=12.00. Now with85

the tangent line l1.0 drawn at P (2, 8) which passes through the X-axes at A1 and86

with the perpendicular line from P (2, 8) to X-axes at B(2, 0) we have an area (4)87

enclosed by triangle PA1B=2.6667 (4PA1B = 2.6667). Similarly all the triangles88

are formed by using fractional derivative values m0.1,m0.2, . . . , m0.9 with tangent line89

l0.1, l0.2, . . . , l0.9 passing through point P (2, 8). The areas of triangles are computed90

and the related results are shown in table 4.1.91

Similarly, the areas of triangles (4) for the function g(x) = x4 + x3 at P (2, 24) are92

computed and the results are shown in table 4.2.93

Figure.1 and Figure.2 show the graphs of the functions f(x) and g(x) with triangles94

formed by fractional derivatives of order 0.2, 0.4, 0.6 and 0.8.95

From Tables 4.1 and 4.2 and from the graphs of the functions f(x) and g(x), it96

is observed that if the value of fractional order derivative increases, then the area97

of triangle decreases, and if the value of fractional order derivative decreases, then98

the area of triangle increases. Hence fractional order derivative values and areas of99

triangles are inversely proportional. Further,100

Dα [f(x)] ∝ 1
4

Dα [g(x)] ∝ 1
4

infer101

Dα [f(x)] .4=Dα [g(x)] .4 = constant.
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Figure 1: Graph of the function f(x) = x3 with triangles formed with fractional order
derivatives.

Figure 2: graph of function g(x) = x4 +x3 with triangles formed with fractional order
derivatives

We conclude that the product of fractional order derivative with the correspondent102

area is constant, so the fractional derivative produces the change in the area of the103

triangle enclosed by the tangent line at particular point and vertical line passing104

through this point and above X-axes with respect to fractional gradient line.105

The change of area is a physical property, therefore fractional derivatives can be106

used to measure the changes in temperature, pressure, gradient, divergence and curl,107

etc.108
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5 Application in physical quantity divergence109

Area and divergence are physical quantities. Fractional order derivative produces the110

change in area of a triangle mentioned in section 4. In this section we will show that111

fractional order derivative produces the changes in divergence of vector field.112

5.1 The divergence113

In physical terms, the divergence of a three dimensional vector field is the extent to114

which the vector field flow behaves like a source or a sink at a given point.115

Let x, y, z be a system of Cartesian coordinates on 3-dimensional space and let116

i, j, k be the corresponding basis of unit vector [3].117

The divergence of continuous differentiable vector field F = F1
−→
i + F2

−→
j +F 3

−→
k is118

defined to be the scalar-valued function given by119

(5.1) Div F = ∇.F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
.

Thus the divergence at a point measures how much the vector field F “spreads out”120

at the point. A positive divergence means that vector field has a net expansion from121

the point. A negative divergence means it has a net contraction into the point.122

5.2 Fractional divergence123

Fractional divergence of a vector filed F can be defined by using the concepts of124

fractional order derivatives:125

(5.2) ∇α.F =
∂αF1

∂xα
+

∂αF2

∂yα
+

∂αF3

∂zα
,

where α is the order of derivative and 0 < α < 1.126

5.3 Comparison of two model of divergence127

One might consider, e.g., K(x, y, z) = x4 +y3 +z2, two points A(1, 1, 1) and B(4, 1, 2)128

and compare the divergence of gradient K with fractional divergence of gradient K129

at these points.130

5.3.1 Divergence of ∇K(x,y, z)131

Let ∇K = F = 4x3−→i + 3y2−→j + 2z
−→
k

Div F = ∇.F =
∂

∂x

(
4x3

)
+

∂

∂y

(
3y2

)
+

∂

∂z
(2z)(5.3)

= 12x2 + 6y + 2.

Therefore at A(1, 1, 1) we have

∇.F (1, 1, 1) = 20

|F (1, 1, 1)| =
√

29 = 5.3852
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Table 5.1
fractional divergence at B(4, 1, 2) fractional divergence at A(1, 1, 1)

∇0.1.F = 259.49 ∇0.1.F = 9.8918
∇0.2.F = 255.30 ∇0.2.F = 10.8390
∇0.3.F = 250.44 ∇0.3.F = 11.8399
∇0.4.F = 244.93 ∇0.4.F = 12.8920
∇0.5.F = 238.30 ∇0.5.F = 13.9919
∇0.6.F = 232.07 ∇0.6.F = 15.1348
∇0.7.F = 224.79 ∇0.7.F = 16.3149
∇0.8.F = 216.98 ∇0.8.F = 17.5250
∇0.9.F = 208.70 ∇0.9.F = 18.7567

As it can be observed, ∇.F > |F |. Similarly, at B(4, 1, 2), we have

∇.F (4, 1, 2) = 200

|F (4, 1, 2)| =
√

65561 = 256.0488

and hence ∇.F < |F |.132

5.3.2 Fractional divergence of ∇K(x, y, z)133

Using the formula

Dα
[
xβ

]
=

Γ(β + 1)
Γ(β + 1− α)

xβ−α,

the fractional divergence values are computed for α = 0.1, 0.2, . . . , 0.9 at two points134

A(1, 1, 1) and B(4, 1, 2). As shown in table 5.1, it is observed that:135

1. When ∇.F < |F | at B(4, 1, 2) the amount fractional divergence of vector field136

F is decreasing from ∇0.1.F to ∇0.9.F , Fractional divergence of vector field F137

at α = 0.1 is very high than the divergence of F .138

2. When ∇.F > |F | at A(1, 1, 1) the amount fractional divergence of vector field139

F is increasing from ∇0.1.F to ∇0.9.F , Fractional divergence of vector field F140

at α = 0.1 is very low than the divergence of F .141

It is suggested that to obtain the higher amount of vector field spread out, we can142

use the fractional divergence ∇0.1.F , rather than ∇.F . Thus geometric and physical143

interpretation of fractional order derivative of a polynomial function play important144

role for measuring the changes in physical quantities.145

6 Critical point of fractional derivatives for polyno-146

mial functions147

According to the table 6.1, for values taken by fractional derivatives Dα[xβ ] at dif-148

ferent values of β = 2, 3, . . . , 10, it can be seen that there are two different results for149

x = β and x 6= β. Namely, there is a monotonically increasing or decreasing trend150

for the case x 6= β. But it is somehow different for the case x = β, and we will prove151

that in this case α = 0.5 is a critical point for Dα[xβ ].152

We set153

D (x, β, α) = Dα[xβ ].
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For x = β, we have

D(β, β, α) = D(β, α) =
Γ(β + 1)

Γ(β + 1− α)
ββ−α,

and hence154

(6.1)
∂D

∂α
=

Γ (β + 1) β(β−α) [ψ (β + 1− α)− ln (β) ]
Γ (β + 1− α)

= 0,

where

ψ(x) =
d

dx
ln (Γ(x)) =

d
dxΓ(x)
Γ(x)

.

The numerical solutions of (6.1) for different values of β = 2, 3, . . . , 10 give the critical155

point α = 0.5 in the interval 0 < α < 1.156

Hence, according with results of table 6.1 for Dα [f(x)] = Dα[xβ ] and also from157

the produced triangles of Section 4, we conclude that:158

1. If x > β, then the value of fractional derivative (m) decrease and the area of159

triangle (4) increase.160

2. If x < β, then the value of fractional derivative (m) increase and the area of161

triangle (4) decrease.162

3. If x = β then the value of fractional derivative increase from α = 0.1 to α = 0.5163

and decrease from α = 0.5 to α = 1.0, and conversely the area of triangle164

primarily decrease and then increase.165
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Table 6.1 fractional derivative values for polynomial function f(x) = xβ

x = 1
Dα[f(x)] β= 2 β= 4 β= 6 β= 8 β= 10
D0.1[f(x)] 1.0945 1.1612 1.2050 1.2380 1.2645
D0.2[f(x)] 1.1930 1.3455 1.4498 1.5308 1.5975
D0.3[f(x)] 1.2948 1.5553 1.7416 1.8905 2.0162
D0.4[f(x)] 1.3990 1.7935 2.0888 2.3320 2.5421
D0.5[f(x)] 1.5045 2.0633 2.5010 2.8729 3.2020
D0.6[f(x)] 1.6101 2.3678 2.9896 3.5350 4.0293
D0.7[f(x)] 1.7142 2.7102 3.5677 4.3442 5.0651
D0.8[f(x)] 1.8152 3.0941 4.2501 5.3317 6.3607
D0.9[f(x)] 1.9112 3.5229 5.0543 6.5353 7.9796
D1.0[f(x)] 2.0000 4.0000 6.0000 8.0000 10.0000

x = 2
Dα[f(x)] β= 2 β= 4 β= 6 β= 8 β= 10
D0.1[f(x)] 4.0847 17.3358 71.9575 295.6975 1208.1614
D0.2[f(x)] 4.1542 18.7406 80.7783 341.1449 1424.0745
D0.3[f(x)] 4.2067 20.2123 90.5368 393.1041 1676.9461
D0.4[f(x)] 4.2409 21.7481 101.3110 452.4257 1972.7864
D0.5[f(x)] 4.2554 23.3438 113.1822 520.0576 2318.5229
D0.6[f(x)] 4.2490 24.9944 126.2342 597.0537 2722.1293
D0.7[f(x)] 4.2209 26.6935 140.5535 684.5834 3192.7713
D0.8[f(x)] 4.1703 28.4335 156.2282 783.9408 3740.9688
D0.9[f(x)] 4.0967 30.2058 173.3473 896.5550 4378.7789
D1.0[f(x)] 4.0000 32.0000 192.0000 1024.0000 5120.0000

x = 3
Dα[f(x)] β= 2 β= 4 β= 6 β= 8 β= 10
D0.1[f(x)] 8.8255 84.2750 787.0716 7277.2721 66900.3561
D0.2[f(x)] 8.6188 87.4841 848.4451 8062.1480 75722.8647
D0.3[f(x)] 8.3810 90.6054 913.1566 8920.9332 85625.7365
D0.4[f(x)] 8.1134 93.6160 981.2232 9859.1806 96728.8799
D0.5[f(x)] 7.8176 96.4920 1052.6402 10882.6800 109163.7247
D0.6[f(x)] 7.4958 99.2093 1127.3788 11997.4435 123074.0782
D0.7[f(x)] 7.1503 101.7433 1205.3840 13209.6875 138617.0081
D0.8[f(x)] 6.7838 104.0694 1286.5717 14525.8090 155963.7496
D0.9[f(x)] 6.3993 106.1629 1370.8266 15952.3573 175300.6294
D1.0[f(x)] 6.0000 108.0000 1458.0000 17496.0000 196830.0000

x = 4
Dα[f(x)] β= 2 β= 4 β= 6 β= 8 β= 10
D0.1[f(x)] 15.2448 258.7973 4296.8758 70629.2560 1154308.5756
D0.2[f(x)] 14.4656 261.0336 4500.5793 76027.8852 1269482.3128
D0.3[f(x)] 13.6676 262.6803 4706.4785 81740.7390 1394793.9826
D0.4[f(x)] 12.8559 263.7117 4913.8822 87775.8861 1530974.7569
D0.5[f(x)] 12.0360 264.1052 5122.0403 94140.4744 1678789.8834
D0.6[f(x)] 11.2133 263.8422 5330.1453 100840.5866 1839038.0537
D0.7[f(x)] 10.3931 262.9080 5537.3340 107881.0886 2012550.4280
D0.8[f(x)] 9.5807 261.2924 5742.6905 115265.4717 2200189.2803
D0.9[f(x)] 8.7814 258.9899 5945.2493 122995.6913 2402846.2271
D1.0[f(x)] 8.0000 256.0000 6144.0000 131072.0000 2621440.0000

x = 5
Dα[f(x)] β= 2 β= 4 β= 6 β= 8 β= 10
D0.1[f(x)] 23.2943 617.8865 16029.5703 411693.2382 10513106.1845
D0.2[f(x)] 21.6160 609.4730 16418.9920 433382.1419 11306932.0407
D0.3[f(x)] 19.9728 599.7836 16791.2548 455664.9881 12148906.5448
D0.4[f(x)] 18.3722 588.8510 17144.3417 478510.3337 13040797.6114
D0.5[f(x)] 16.8209 576.7160 17476.2426 501881.8381 13984323.6623
D0.6[f(x)] 15.3252 563.4278 17784.9692 525738.1101 14981139.1567
D0.7[f(x)] 13.8908 549.0436 18068.5703 550032.5803 16032819.0911
D0.8[f(x)] 12.5225 533.6283 18325.1474 574713.4032 17140842.4877
D0.9[f(x)] 11.2244 517.2541 18552.8716 599723.3938 18306574.9028
D1.0[f(x)] 10.0000 500.0000 18750.0000 625000.0000 19531250.0000
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Table 6.1(continue)fractional derivative values for polynomial function f(x) = xβ

x = 6
Dα[f(x)] β= 2 β= 4 β= 6 β= 8 β= 10
D0.1[f(x)] 32.9378 1258.1012 46999.2829 1738223.3428 63918325.1678
D0.2[f(x)] 30.0124 1218.5496 47271.3188 1796737.9082 67502676.5132
D0.3[f(x)] 27.2300 1177.5117 47469.6746 1854988.6412 71218902.6845
D0.4[f(x)] 24.5952 1135.1621 47592.2011 1912796.5993 75066145.6135
D0.5[f(x)] 22.1116 1091.6825 47637.0564 1969975.5011 79042979.8590
D0.6[f(x)] 19.7816 1047.2600 47602.7285 2026332.3617 83147376.5421
D0.7[f(x)] 17.6061 1002.0859 47488.0562 2081668.2156 87376668.2004
D0.8[f(x)] 15.5850 956.3543 47292.2477 2135778.9274 91727514.9076
D0.9[f(x)] 13.7171 910.2607 47014.8974 2188456.0887 96195872.0294
D1.0[f(x)] 12.0000 864.0000 46656.0000 2239488.0000 100776960.0000

x = 7
Dα[f(x)] β= 2 β= 4 β= 6 β= 8 β= 10
D0.1[f(x)] 44.1462 2295.1340 116701.7291 5874693.5375 294034712.2946
D0.2[f(x)] 39.6100 2188.9760 115581.7054 5979566.3593 305773279.7374
D0.3[f(x)] 35.3880 2082.8996 114291.2429 6078991.4810 317672146.3569
D0.4[f(x)] 31.4749 1977.2716 112833.4359 6172546.8110 329710894.3358
D0.5[f(x)] 27.8638 1872.4496 111212.1561 6259818.5896 341867492.0140
D0.6[f(x)] 24.5463 1768.7792 109432.0438 6340403.8889 354118302.3061
D0.7[f(x)] 21.5126 1666.5923 107498.4935 6413913.1578 366438101.1276
D0.8[f(x)] 18.7518 1566.2048 105417.6332 6479972.7951 378800106.3946
D0.9[f(x)] 16.2519 1467.9147 103196.2985 6538227.7313 391176018.1099
D1.0[f(x)] 14.0000 1372.0000 100842.0000 6588344.0000 403536070.0000

x = 8
Dα[f(x)] β= 2 β= 4 β= 6 β= 8 β= 10
D0.1[f(x)] 56.8955 3863.4620 256584.1222 16870253.0521 1102856175.0096
D0.2[f(x)] 50.3722 3635.8871 250750.8366 16943646.2770 1131672107.5556
D0.3[f(x)] 44.4061 3413.8036 244662.2996 16996892.4551 1160114948.9428
D0.4[f(x)] 38.9719 3197.6973 238337.6847 17029550.6740 1188108186.5610
D0.5[f(x)] 34.0431 2988.0093 231797.0843 17041246.1582 1215573719.7697
D0.6[f(x)] 29.5921 2785.1349 225061.4041 17031673.8254 1242432133.1620
D0.7[f(x)] 25.5908 2589.4218 218152.2502 17000601.5354 1268602990.5955
D0.8[f(x)] 22.0107 2401.1693 211091.8110 16947872.9956 1294005149.1848
D0.9[f(x)] 18.8233 2220.6282 203902.7343 16873410.2899 1318557092.2480
D1.0[f(x)] 16.0000 2048.0000 196608.0000 16777216.0000 1342177280.0000

x = 9
Dα[f(x)] β= 2 β= 4 β= 6 β= 8 β= 10
D0.1[f(x)] 71.1652 6116.0564 514078.7598 42778595.7525 3539393519.8682
D0.2[f(x)] 62.2681 5688.3980 496508.8808 42461619.2210 3589346058.9210
D0.3[f(x)] 54.2503 5278.4070 478780.4751 42096302.2859 3636474033.2261
D0.4[f(x)] 47.0539 4886.3709 460942.5942 41683325.5086 3680613407.9176
D0.5[f(x)] 40.6217 4512.4850 443043.9825 41223538.5607 3721604905.3594
D0.6[f(x)] 34.8970 4156.8544 425132.8315 40717958.6896 3759294818.2299
D0.7[f(x)] 29.8251 3819.4965 407256.5388 40167768.2083 3793535823.7890
D0.8[f(x)] 25.3523 3500.3451 389461.4734 39574311.0023 3824187794.3588
D0.9[f(x)] 21.4271 3199.2536 371792.7477 38939088.0550 3851118598.8500
D1.0[f(x)] 18.0000 2916.0000 354294.0000 38263752.0000 3874204890.0000

x = 10
Dα[f(x)] β= 2 β= 4 β=6 β= 8 β= 10
D0.1[f(x)] 86.9375 9224.1359 957191.5472 98335583.6467 10044492711.6096
D0.2[f(x)] 75.2712 8489.2328 914788.0152 96583953.3364 10079494202.5418
D0.3[f(x)] 64.8918 7794.8109 872879.1654 94749434.5094 10104809937.0167
D0.4[f(x)] 55.6939 7140.2496 831550.8061 92836613.1221 10120270325.8127
D0.5[f(x)] 47.5766 6524.7968 790884.4567 90850317.0755 10125731934.1131
D0.6[f(x)] 40.4435 5947.5798 750957.0422 88795596.2014 10121078594.3850
D0.7[f(x)] 34.2032 5407.6159 711840.6187 86677700.9122 10106222414.9483
D0.8[f(x)] 28.7691 4903.8235 673602.1325 84502059.6336 10081104675.2658
D0.9[f(x)] 24.0601 4435.0334 636303.2126 82274255.1495 10045696599.4469
D1.0[f(x)] 20.0000 4000.0000 600000.0000 80000000.0000 10000000000.0000
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