The geometric and physical interpretation of fractional order derivatives of polynomial functions

M.H. Tavassoli, A. Tavassoli, M.R. Ostad Rahimi

Abstract. In this paper, after a brief mention of the definitions of fractionalorder derivatives, we present a geometric interpretation of the tangent line angle of a polynomial with coefficients of fractional derivative. Then a comparison of the divergence of a gradient vector field in normal mode with the divergence of a vector field gradient fractions is performed. Finally, we show that there is a relationship between fractional derivative of polynomials at the tangent points and the order of the fractional derivative.

9 M.S.C. 2010: 26A33.

Key words: Fractional calculus; fractional derivatives; polynomial functions; diver gence; critical points.

12 **1** Introduction

It is generally known that integer-order derivatives and integrals have clear physical
and geometric interpretations, which significantly simplify their use for solving applied
problems in various fields of science.

However, in case of fractional-order integration and differentiation, which represent
a rapidly growing field both in theory and in applications to real-world problems, it is
not so. Since the appearance of the idea of differentiation and integration of arbitrary
(not necessary integer) order there was not any acceptable geometric and physical
interpretation of these operations for more than 300 years [2, 10, 15, 5].

Fractional integration and fractional differentiation are generalizations of notions of integer-order integration and differentiation, and include nth derivatives and nfold integrals (n denotes an integer number) as particular cases. Because of this, it would be ideal to have such physical and geometric interpretations of fractionalorder operators, which will provide also a link to known classical interpretations of integer-order differentiation and integration.

Obviously, there is still a lack of geometric and physical interpretation of fractional
 integration and differentiation, which is comparable with the simple interpretations
 of their integer-order counterparts.

DIFFERENTIAL GEOMETRY - DYNAMICAL SYSTEMS, Vol.15, 2013, pp. 93-104. © Balkan Society of Geometers, Geometry Balkan Press 2013.

During the last two decades several authors have applied the fractional calculus in the field of sciences, engineering and mathematics (see [9, 4, 11, 6]). Mathematician Liouville, Riemann, and Caputo have done major work on fractional calculus, thus suggested a solution of more than 300 years old problem of geometric and physical interpretation of fractional integration and differentiation in 2002, for left-sided and right-sided of Riemann-Liouville fractional integrals [13, 1, 7].

J. A. Tenreiro Machado in 2003, presented a probabilistic interpretation of fractional order derivative, based on Grunwald –Letnikov definition of fractional order differentiation [8].

In this paper a new geometric interpretation for properties of polynomial's tangent
 line is defined as an area of a triangle and then the relationship between this area and
 order of differentiation is investigated.

Finally, it is shown that the area univocally increase or decrease according to the increasing of order of fractional derivative, except in the case where the order of derivative is equal to 0.5. some application of fractional derivatives in divergence of vector field gradient is also illustrated.

47 2 Definitions of fractional order derivatives

A number of researchers in this field have defined the fractional derivatives in different
 ways.[14, 12]

⁵⁰ 2.1 The Grunwald-Letnikov definition

(2.1)
$$\qquad \qquad \underset{a}{^{GL}D_x^{\alpha}f(x)} = \lim_{h \to 0} \frac{1}{h^{\alpha}} \sum_{n=0}^{\left[\frac{x-a}{h}\right]} \left(-1\right)^n \left(\begin{array}{c} \alpha\\ n \end{array}\right) f(x-nh)$$

s_1 where $a = x - nh \Rightarrow n = \frac{x-a}{h}$.

52 2.2 The Riemann-Liouville definition

⁵³ The Riemann-liouville derivative of order α and with lower limit *a* is defined as:

(2.2)
$${}^{RL}_{a}D_{x}^{\alpha}f(x) = \frac{1}{\Gamma(n-\alpha)} \left(\frac{d}{dx}\right)^{n} \int_{a}^{x} \frac{f(\tau)}{(x-\tau)^{\alpha-n+1}} d\tau$$

where n is integer, α is real number and $(n-1) \leq \alpha < n$.

⁵⁵ 2.3 The M. Caputo (1967) definition

56 Caputo derivatives of order α are defined as:

(2.3)
$${}^{c}_{a}D^{\alpha}_{x}f(x) = \frac{1}{\Gamma(n-\alpha)}\int_{a}^{x}\frac{f^{(n)}(\tau)}{\left(x-\tau\right)^{\alpha-n+1}}d\tau,$$

where n is integer, α is real number and $(n-1) \leq \alpha < n$.

⁵⁸ 3 Fractional derivatives properties

⁵⁹ 3.1 Definitions of Oldham and Spanier (1974)

⁶⁰ The scaling property of fractional derivatives is described by:

(3.1)
$$\frac{d^{\alpha}f(\beta x)}{dx^{\alpha}} = \beta^{\alpha}\frac{d^{\alpha}f(\beta x)}{d(\beta x)^{\alpha}}.$$

⁶¹ This makes it suitable for the study of scaling and scale invariance. There is connection

between local-scaling, box-dimension of an irregular function and order of fractional
 derivative.

64 3.2 Linearity

⁶⁵ Fractional differentiation is a linear operation:

(3.2)
$$D^{\alpha}\left(\mu f(x) + \omega g(x)\right) = \mu D^{\alpha} f(x) + \omega D^{\alpha} g(x),$$

where D^{α} denotes any mutation of the fractional differentiation considered in this paper.

⁶⁸ 3.3 Definitions of K. S. Miller and B. Ross (1993)

(3.3)
$$D^{\alpha}f(x) = D^{\alpha_1}D^{\alpha_2}\dots D^{\alpha_n}f(x)$$
$$\alpha = \alpha_1 + \alpha_{2+\dots+}\alpha_n$$
$$\alpha_i < 1$$

⁶⁹ This definition of sequential composition is very useful concept for obtaining frac-⁷⁰ tional derivative of an arbitrary order. The derivative operator can be any definition ⁷¹ Rimann-Liouville or Caputo.

⁷² 4 Geometric and physical interpretation of fractional ⁷³ order derivatives

⁷⁴ Geometrical and physical interpretations of integer order derivative and integral are ⁷⁵ defined in a simple way. The fractional order derivative and fractional order integral ⁷⁶ are not yet well established in simple way. In this paper, a simple interpretation ⁷⁷ of fractional order derivative is presented, which is useful in the applications of the ⁷⁸ subject.

 $_{79}\,$ The fractional order derivatives of a polynomial function can be computed by the $_{80}\,$ formula

(4.1)
$$D^{\alpha} \left[x^{\beta} \right] = \frac{\Gamma(\beta+1)}{\Gamma(\beta+1-\alpha)} x^{\beta-\alpha},$$

where α is the order of derivative and $0 < \alpha < 1$. By using the formula given in (4.1) and the property (3.2), the fractional derivative values of functions $f(x) = x^3$ and $g(x) = x^4 + x^3$ at x = 2 were computed and shown in table 4.1 and table 4.2 respectively.

Table 4.1			
Fractional order derivatives	Fractional derivative values at	$\theta = \tan^{-1}m$	Area of triangle
	x = 2	(in radian)	(△)
	$m = \tan \theta$		
$D^{0.1}[f(x)]$	$m_{0.1} = 8.4512$	$\theta_{0.1} = 1.4530$	$\triangle PA_{0.1}B = 3.7865$
$D^{0.2}[f(x)]$	$m_{0.2} = 8.9018$	$\theta_{0.2} = 1.4589$	$\triangle PA_{0.2}B = 3.5948$
$D^{0.3}[f(x)]$	$m_{0.3} = 9.3482$	$\theta_{0.3} = 1.4642$	$\triangle PA_{0.3}B = 3.4231$
$D^{0.4}[f(x)]$	$m_{0.4} = 9.7866$	$\theta_{0.4} = 1.4690$	$\triangle PA_{0.4}B = 3.2698$
$D^{0.5}[f(x)]$	$m_{0.5} = 10.2129$	$\theta_{0.5} = 1.4732$	$\triangle PA_{0.5}B = 3.1333$
$D^{0.6}[f(x)]$	$m_{0.6} = 10.6226$	$\theta_{0.6} = 1.4769$	$\triangle PA_{0.6}B = 3.0124$
$D^{0.7}[f(x)]$	$m_{0.7} = 11.0111$	$\theta_{0.7} = 1.4802$	$\triangle PA_{0.7}B = 2.9062$
$D^{0.8}[f(x)]$	$m_{0.8} = 11.3734$	$\theta_{0.8} = 1.4831$	$\triangle PA_{0.8}B = 2.8136$
$D^{0.9}[f(x)]$	$m_{0.9} = 11.7047$	$\theta_{0.9} = 1.4856$	$\triangle PA_{0.9}B = 2.7339$
$D^{1.0}[f(x)]$	$m_{1.0} = 12.0000$	$\theta_{1.0} = 1.4877$	$\triangle PA_{1.0}B = 2.6667$

Table 4.2			
Fractional order derivatives	Fractional derivative values at	$\theta = \tan^{-1}m$	Area of triangle
	x = 2	(in radian)	(△)
	$m = \tan \theta$		
$D^{0.1}[g(x)]$	$m_{0.1} = 25.787$	$\theta_{0.1} = 1.5320$	$\triangle PA_{0.1}B = 11.1684$
$D^{0.2}[g(x)]$	$m_{0.2} = 27.642$	$\theta_{0.2} = 1.5346$	$\triangle PA_{0.2}B = 10.4188$
$D^{0.3}[g(x)]$	$m_{0.3} = 29.561$	$\theta_{0.3} = 1.5370$	$\triangle PA_{0.3}B = 9.7427$
$D^{0.4}[g(x)]$	$m_{0.4} = 31.535$	$\theta_{0.4} = 1.5391$	$\triangle PA_{0.4}B = 9.1328$
$D^{0.5}[g(x)]$	$m_{0.5} = 33.557$	$\theta_{0.5} = 1.5410$	$\triangle PA_{0.5}B = 8.5825$
$D^{0.6}[g(x)]$	$m_{0.6} = 35.617$	$\theta_{0.6} = 1.5427$	$\triangle PA_{0.6}B = 8.0860$
$D^{0.7}[g(x)]$	$m_{0.7} = 37.705$	$\theta_{0.7} = 1.5443$	$\triangle PA_{0.7}B = 7.6383$
$D^{0.8}[g(x)]$	$m_{0.8} = 39.807$	$\theta_{0.8} = 1.5457$	$\triangle PA_{0.8}B = 7.2349$
$D^{0.9}[g(x)]$	$m_{0.9} = 41.911$	$\theta_{0.9} = 1.5469$	$\triangle PA_{0.9}B = 6.8718$
$D^{1.0}[g(x)]$	$m_{1,0} = 44.000$	$\theta_{1,0} = 1.5481$	$\triangle PA_{1,0}B = 6.5455$

⁸⁵ Consider the function $f(x)=x^3$ at P(2,8) we have $D^{1.0}[f(x)]=12.00$. Now with ⁸⁶ the tangent line $l_{1.0}$ drawn at P(2,8) which passes through the X-axes at A_1 and ⁸⁷ with the perpendicular line from P(2,8) to X-axes at B(2,0) we have an area (\triangle) ⁸⁸ enclosed by triangle $PA_1B=2.6667$ ($\triangle PA_1B = 2.6667$). Similarly all the triangles ⁸⁹ are formed by using fractional derivative values $m_{0.1}, m_{0.2}, \ldots, m_{0.9}$ with tangent line ⁹⁰ $l_{0.1}, l_{0.2}, \ldots, l_{0.9}$ passing through point P(2,8). The areas of triangles are computed ⁹¹ and the related results are shown in table 4.1.

Similarly, the areas of triangles (\triangle) for the function $g(x) = x^4 + x^3$ at P(2, 24) are computed and the results are shown in table 4.2.

Figure.1 and Figure.2 show the graphs of the functions f(x) and g(x) with triangles formed by fractional derivatives of order 0.2, 0.4, 0.6 and 0.8.

From Tables 4.1 and 4.2 and from the graphs of the functions f(x) and g(x), it is observed that if the value of fractional order derivative increases, then the area of triangle decreases, and if the value of fractional order derivative decreases, then the area of triangle increases. Hence fractional order derivative values and areas of triangles are inversely proportional. Further,

$$D^{\alpha} [f(x)] \propto \frac{1}{\triangle}$$
$$D^{\alpha} [g(x)] \propto \frac{1}{\triangle}$$

101 infer

$$D^{\alpha}[f(x)] . \triangle = D^{\alpha}[g(x)] . \triangle = \text{ constant.}$$

Figure 1: Graph of the function $f(x) = x^3$ with triangles formed with fractional order derivatives.

Figure 2: graph of function $g(x) = x^4 + x^3$ with triangles formed with fractional order derivatives

We conclude that the product of fractional order derivative with the correspondent area is constant, so the fractional derivative produces the change in the area of the triangle enclosed by the tangent line at particular point and vertical line passing through this point and above X-axes with respect to fractional gradient line.

The change of area is a physical property, therefore fractional derivatives can be
 used to measure the changes in temperature, pressure, gradient, divergence and curl,
 etc.

¹⁰⁹ 5 Application in physical quantity divergence

Area and divergence are physical quantities. Fractional order derivative produces the change in area of a triangle mentioned in section 4. In this section we will show that fractional order derivative produces the changes in divergence of vector field.

113 5.1 The divergence

In physical terms, the divergence of a three dimensional vector field is the extent to which the vector field flow behaves like a source or a sink at a given point.

Let x, y, z be a system of Cartesian coordinates on 3-dimensional space and let i, j, k be the corresponding basis of unit vector [3].

The divergence of continuous differentiable vector field $F = F_1 \overrightarrow{i} + F_2 \overrightarrow{j} + F_3 \overrightarrow{k}$ is defined to be the scalar-valued function given by

(5.1)
$$Div \ F = \nabla F = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}.$$

Thus the divergence at a point measures how much the vector field F "spreads out" at the point. A positive divergence means that vector field has a net expansion from the point. A negative divergence means it has a net contraction into the point.

¹²³ 5.2 Fractional divergence

Fractional divergence of a vector filed F can be defined by using the concepts of fractional order derivatives:

(5.2)
$$\nabla^{\alpha} \cdot F = \frac{\partial^{\alpha} F_1}{\partial x^{\alpha}} + \frac{\partial^{\alpha} F_2}{\partial y^{\alpha}} + \frac{\partial^{\alpha} F_3}{\partial z^{\alpha}},$$

where α is the order of derivative and $0 < \alpha < 1$.

¹²⁷ 5.3 Comparison of two model of divergence

One might consider, e.g., $K(x, y, z) = x^4 + y^3 + z^2$, two points A(1, 1, 1) and B(4, 1, 2)and compare the divergence of gradient K with fractional divergence of gradient K at these points.

131 5.3.1 Divergence of $\nabla K(x, y, z)$

Let $\nabla K = F = 4x^3 \overrightarrow{i} + 3y^2 \overrightarrow{j} + 2z \overrightarrow{k}$

(5.3)
$$Div \ F = \nabla F = \frac{\partial}{\partial x} \left(4x^3\right) + \frac{\partial}{\partial y} \left(3y^2\right) + \frac{\partial}{\partial z} \left(2z\right)$$
$$= 12x^2 + 6y + 2.$$

Therefore at A(1, 1, 1) we have

$$abla .F(1,1,1) = 20$$

 $|F(1,1,1)| = \sqrt{29} = 5.3852$

98

Table 5.1	
fractional divergence at $B(4, 1, 2)$	fractional divergence at $A(1, 1, 1)$
$\nabla^{0.1}.F = 259.49$	$\nabla^{0.1}.F = 9.8918$
$\nabla^{0.2}.F = 255.30$	$\nabla^{0.2}.F = 10.8390$
$\nabla^{0.3}.F = 250.44$	$\nabla^{0.3}.F = 11.8399$
$\nabla^{0.4}.F = 244.93$	$\nabla^{0.4}.F = 12.8920$
$\nabla^{0.5}.F = 238.30$	$\nabla^{0.5}.F = 13.9919$
$\nabla^{0.6}.F = 232.07$	$\nabla^{0.6}.F = 15.1348$
$\nabla^{0.7}.F = 224.79$	$\nabla^{0.7}.F = 16.3149$
$\nabla^{0.8}.F = 216.98$	$\nabla^{0.8}.F = 17.5250$
$\nabla^{0.9}.F = 208.70$	$\nabla^{0.9}.F = 18.7567$

As it can be observed, $\nabla F > |F|$. Similarly, at B(4, 1, 2), we have

$$\begin{aligned} \nabla.F(4,1,2) &= 200 \\ |F(4,1,2)| &= \sqrt{65561} = 256.0488 \end{aligned}$$

132 and hence $\nabla F < |F|$.

133 5.3.2 Fractional divergence of $\nabla \mathbf{K}(x, y, z)$

Using the formula

$$D^{\alpha} \left[x^{\beta} \right] = \frac{\Gamma(\beta+1)}{\Gamma(\beta+1-\alpha)} x^{\beta-\alpha},$$

the fractional divergence values are computed for $\alpha = 0.1, 0.2, \ldots, 0.9$ at two points A(1,1,1) and B(4,1,2). As shown in table 5.1, it is observed that:

136 1. When $\nabla . F < |F|$ at B(4,1,2) the amount fractional divergence of vector field 137 F is decreasing from $\nabla^{0.1} . F$ to $\nabla^{0.9} . F$, Fractional divergence of vector field F138 at $\alpha = 0.1$ is very high than the divergence of F.

2. When $\nabla F > |F|$ at A(1,1,1) the amount fractional divergence of vector field *F* is increasing from $\nabla^{0.1}F$ to $\nabla^{0.9}F$, Fractional divergence of vector field *F* at $\alpha = 0.1$ is very low than the divergence of *F*.

It is suggested that to obtain the higher amount of vector field spread out, we can use the fractional divergence $\nabla^{0.1}.F$, rather than $\nabla.F$. Thus geometric and physical interpretation of fractional order derivative of a polynomial function play important role for measuring the changes in physical quantities.

¹⁴⁶ 6 Critical point of fractional derivatives for polyno ¹⁴⁷ mial functions

According to the table 6.1, for values taken by fractional derivatives $D^{\alpha}[x^{\beta}]$ at different values of $\beta = 2, 3, ..., 10$, it can be seen that there are two different results for $x = \beta$ and $x \neq \beta$. Namely, there is a monotonically increasing or decreasing trend for the case $x \neq \beta$. But it is somehow different for the case $x = \beta$, and we will prove that in this case $\alpha = 0.5$ is a critical point for $D^{\alpha}[x^{\beta}]$.

153 We set

$$D(x,\beta,\alpha) = D^{\alpha}[x^{\beta}].$$

For $x = \beta$, we have

$$D(\beta, \beta, \alpha) = D(\beta, \alpha) = \frac{\Gamma(\beta + 1)}{\Gamma(\beta + 1 - \alpha)} \beta^{\beta - \alpha}$$

154 and hence

(6.1)
$$\frac{\partial D}{\partial \alpha} = \frac{\Gamma\left(\beta+1\right)\beta^{\left(\beta-\alpha\right)}\left[\psi\left(\beta+1-\alpha\right)-\ln\left(\beta\right)\right]}{\Gamma\left(\beta+1-\alpha\right)} = 0,$$

where

$$\psi(x) = \frac{d}{dx} \ln(\Gamma(x)) = \frac{\frac{d}{dx}\Gamma(x)}{\Gamma(x)}$$

The numerical solutions of (6.1) for different values of $\beta = 2, 3, ..., 10$ give the critical point $\alpha = 0.5$ in the interval $0 < \alpha < 1$.

Hence, according with results of table 6.1 for $D^{\alpha}[f(x)] = D^{\alpha}[x^{\beta}]$ and also from the produced triangles of Section 4, we conclude that:

159 1. If $x > \beta$, then the value of fractional derivative (m) decrease and the area of 160 triangle (\triangle) increase.

161 2. If $x < \beta$, then the value of fractional derivative (m) increase and the area of 162 triangle (Δ) decrease.

163 3. If $x = \beta$ then the value of fractional derivative increase from $\alpha = 0.1$ to $\alpha = 0.5$ 164 and decrease from $\alpha = 0.5$ to $\alpha = 1.0$, and conversely the area of triangle 165 primarily decrease and then increase.

Table 6.1 fractional derivative values for polynomial function $f(x) = x^{\beta}$						
	2 2	2 ($\mathbf{x} = 1$	0.0	0.10	
$\mathbf{D}^{\alpha}[f(x)]$	$\beta = 2$	$\beta = 4$	$\beta = 6$	$\beta = 8$	$\beta = 10$	
$\mathbf{D}^{0.1}[f(x)]$	1.0945	1.1612	1.2050	1.2380	1.2645	
$\mathbf{D}^{0.2}[f(x)]$	1.1930	1.3455	1.4498	1.5308	1.5975	
$\mathbf{D}^{0.3}[f(x)]$	1.2948	1.5553	1.7416	1.8905	2.0162	
$\mathbf{D}^{0.4}[f(x)]$	1.3990	1.7935	2.0888	2.3320	2.5421	
$D^{0.5}[f(x)]$	1.5045	2.0633	2.5010	2.8729	3.2020	
$\mathbf{D}^{0.6}[f(x)]$	1.6101	2.3678	2.9896	3.5350	4.0293	
$\mathbf{D}^{0.7}[f(x)]$	1.7142	2.7102	3.5677	4.3442	5.0651	
$\mathbf{D}^{0.8}[f(x)]$	1.8152	3.0941	4.2501	5.3317	6.3607	
$\mathbf{D}^{0.9}[f(x)]$	1.9112	3.5229	5.0543	6.5353	7.9796	
$\mathbf{D}^{1.0}[f(x)]$	2.0000	4.0000	6.0000	8.0000	10.0000	
10 ()1			$\mathbf{x} = 2$			
$\mathbf{D}^{\alpha}[f(x)]$	$\beta = 2$	$\beta = 4$	$\beta = 6$	$\beta = 8$	$\beta = 10$	
$\mathbf{D}^{0.1}[f(x)]$	4.0847	17.3358	71.9575	295.6975	1208.1614	
$\mathbf{D}^{0.2}[f(x)]$	4 1542	18 7406	80 7783	341 1449	1424 0745	
$D^{0.3}[f(x)]$	4 2067	20 2123	90.5368	393 1041	1676 9461	
$\mathbf{D}^{0.4}[f(x)]$	4 2409	21 7481	101.3110	452 4257	1972 7864	
$\mathbf{D}^{0.5}[f(x)]$	4 2554	23 3438	113 1822	520.0576	2318 5229	
$\mathbf{D}^{0.6}[f(x)]$	4.2004	23.5455	126 2242	597.0597	2010.0220	
$\mathbf{D}^{[j(x)]}$ $\mathbf{D}^{0.7[f(x)]}$	4 2200	24.3344	140 5535	684 5824	3192 7713	
$\mathbf{D}^{[j(x)]}$	4.2203	20.0335	156 2282	783 0408	3740.0688	
$\mathbf{D} \left[J(x) \right]$ $\mathbf{D}^{0.9} \left[f(x) \right]$	4.1705	20.4000	172 2472	806 5550	1278 7780	
$\mathbf{D}^{1,0}[f(x)]$	4.0907	22,0000	102 0000	1024.0000	5120.0000	
$\mathbf{D}^{\text{ans}}[f(x)]$	4.0000	32.0000	192.0000	1024.0000	5120.0000	
	2 0	0.4	$\mathbf{x} = 3$	2 0	2 10	
$\mathbf{D}^{-}[f(x)]$	p = 2	p=4	p = 0	p = 8	$\beta = 10$	
$\mathbf{D}^{0,1}[f(x)]$	8.8255	84.2750	787.0716	7277.2721	66900.3561	
$\frac{\mathbf{D}^{0.2}[f(x)]}{\mathbf{D}^{0.3}[f(x)]}$	8.6188	87.4841	848.4451	8062.1480	75722.8647	
$D^{0.0}[f(x)]$	8.3810	90.6054	913.1566	8920.9332	85625.7365	
$D^{0.4}[f(x)]$	8.1134	93.6160	981.2232	9859.1806	96728.8799	
$D^{0.5}[f(x)]$	7.8176	96.4920	1052.6402	10882.6800	109163.7247	
$D^{0.6}[f(x)]$	7.4958	99.2093	1127.3788	11997.4435	123074.0782	
$\mathbf{D}^{0.1}[f(x)]$	7.1503	101.7433	1205.3840	13209.6875	138617.0081	
$\mathbf{D}^{0.8}[f(x)]$	6.7838	104.0694	1286.5717	14525.8090	155963.7496	
$\mathbf{D}^{0.9}[f(x)]$	6.3993	106.1629	1370.8266	15952.3573	175300.6294	
$\mathbf{D}^{1.0}[f(x)]$	6.0000	108.0000	1458.0000	17496.0000	196830.0000	
			$\mathbf{x} = 4$			
$\mathbf{D}^{\alpha}[f(x)]$	$\beta = 2$	$\beta = 4$	$\beta = 6$	$\beta = 8$	$\beta = 10$	
$\mathbf{D}^{0.1}[f(x)]$	15.2448	258.7973	4296.8758	70629.2560	1154308.5756	
$\mathbf{D}^{0.2}[f(x)]$	14.4656	261.0336	4500.5793	76027.8852	1269482.3128	
$\mathbf{D}^{0.3}[f(x)]$	13.6676	262.6803	4706.4785	81740.7390	1394793.9826	
$\mathbf{D}^{0.4}[f(x)]$	12.8559	263.7117	4913.8822	87775.8861	1530974.7569	
$\mathbf{D}^{0.5}[f(x)]$	12.0360	264.1052	5122.0403	94140.4744	1678789.8834	
$\mathbf{D}^{0.6}[f(x)]$	11.2133	263.8422	5330.1453	100840.5866	1839038.0537	
$\mathbf{D}^{0.7}[f(x)]$	10.3931	262.9080	5537.3340	107881.0886	2012550.4280	
$\mathbf{D}^{0.8}[f(x)]$	9.5807	261.2924	5742.6905	115265.4717	2200189.2803	
$\mathbf{D}^{0.9}[f(x)]$	8.7814	258.9899	5945.2493	122995.6913	2402846.2271	
$\mathbf{D}^{1.0}[f(x)]$	8.0000	256.0000	6144.0000	131072.0000	2621440.0000	
$\mathbf{x} = 5$						
$\mathbf{D}^{\alpha}[f(x)]$	$\beta = 2$	$\beta = 4$	$\beta = 6$	$\beta = 8$	$\beta = 10$	
$\mathbf{D}^{0.1}[f(x)]$	23.2943	617.8865	16029.5703	411693.2382	10513106.1845	
$\mathbf{D}^{0.2}[f(x)]$	21.6160	609.4730	16418.9920	433382.1419	11306932.0407	
$\mathbf{D}^{0.3}[f(x)]$	19.9728	599.7836	16791.2548	455664.9881	12148906.5448	
$\mathbf{D}^{0.4}[f(x)]$	18.3722	588.8510	17144.3417	478510.3337	13040797.6114	
$\mathbf{D}^{0.5}[f(x)]$	16.8209	576.7160	17476.2426	501881.8381	13984323.6623	
$\mathbf{D}^{0.6}[f(x)]$	15.3252	563.4278	17784.9692	525738.1101	14981139.1567	
$\mathbf{D}^{0.7}[f(x)]$	13.8908	549.0436	18068.5703	550032.5803	16032819.0911	
$\mathbf{D}^{0.8}[f(x)]$	12.5225	533.6283	18325.1474	574713.4032	17140842.4877	
$\mathbf{D}^{0.9}[f(x)]$	11.2244	517.2541	18552.8716	599723.3938	18306574.9028	
$\mathbf{D}^{1.0}[f(x)]$	10 0000	500.0000	18750 0000	625000.0000	19531250 0000	
- [,(~)]	10.0000	300.0000	-010010000			

Table 6.1 fractional derivative values for polynomial function $f(x) = x^{\beta}$

			$\mathbf{x} = \mathbf{b}$		
$\mathbf{D}^{\alpha}[f(x)]$	$\beta = 2$	$\beta = 4$	$\beta = 6$	$\beta = 8$	$\beta = 10$
$\mathbf{D}^{0.1}[f(x)]$	32.9378	1258.1012	46999.2829	1738223.3428	63918325.1678
$\mathbf{D}^{0.2}[f(x)]$	30.0124	1218.5496	47271.3188	1796737.9082	67502676.5132
$\mathbf{D}^{0.3}[f(x)]$	27.2300	1177.5117	47469.6746	1854988.6412	71218902.6845
$\mathbf{D}^{0.4}[f(x)]$	24.5952	1135.1621	47592.2011	1912796.5993	75066145.6135
$\mathbf{D}^{0.5}[f(x)]$	22.1116	1091.6825	47637.0564	1969975.5011	79042979.8590
$\mathbf{D}^{0.6}[f(x)]$	19.7816	1047.2600	47602.7285	2026332.3617	83147376.5421
$\mathbf{D}^{0.7}[f(x)]$	17.6061	1002.0859	47488.0562	2081668.2156	87376668.2004
$\mathbf{D}^{0.8}[f(x)]$	15.5850	956.3543	47292.2477	2135778.9274	91727514.9076
$\mathbf{D}^{0.9}[f(x)]$	13.7171	910.2607	47014.8974	2188456.0887	96195872.0294
$\mathbf{D}^{1.0}[f(x)]$	12.0000	864.0000	46656.0000	2239488.0000	100776960.0000
			$\mathbf{x} = 7$		1
$\mathbf{D}^{\alpha}[f(x)]$	$\beta = 2$	$\beta = 4$	$\beta = 6$	$\beta = 8$	$\beta = 10$
$D^{0.1}[f(x)]$	44.1462	2295.1340	116701.7291	5874693.5375	294034712.2946
$D^{0.2}[f(x)]$	39.6100	2188.9760	115581.7054	5979566.3593	305773279.7374
$D^{0.3}[f(x)]$	35.3880	2082.8996	114291.2429	6078991.4810	317672146.3569
$D^{0.4}[f(x)]$	31.4749	1977.2716	112833.4359	6172546.8110	329710894.3358
$D^{0.5}[f(x)]$	27.8638	1872.4496	111212.1561	6259818.5896	341867492.0140
$D^{0.6}[f(x)]$	24.5463	1768.7792	109432.0438	6340403.8889	354118302.3061
$D^{0.7}[f(x)]$	21.5126	1666.5923	107498.4935	6413913.1578	366438101.1276
$D^{0.8}[f(x)]$	18.7518	1566.2048	105417.6332	6479972.7951	378800106.3946
$D^{0.9}[f(x)]$	16.2519	1467.9147	103196.2985	6538227.7313	391176018.1099
$D^{1.0}[f(x)]$	14.0000	1372.0000	100842.0000	6588344.0000	403536070.0000
			x = 8		
$D^{\alpha}[f(x)]$	$\beta = 2$	$\beta = 4$	$\beta = 6$	$\beta = 8$	$\beta = 10$
$D^{0.1}[f(x)]$	56.8955	3863.4620	256584.1222	16870253.0521	1102856175.0096
$D^{0.2}[f(x)]$	50.3722	3635.8871	250750.8366	16943646.2770	1131672107.5556
$D^{0.3}[f(x)]$	44.4061	3413.8036	244662.2996	16996892.4551	1160114948.9428
$D^{0.4}[f(x)]$	38.9719	3197.6973	238337.6847	17029550.6740	1188108186.5610
$D^{0.5}[f(x)]$	34.0431	2988.0093	231797.0843	17041246.1582	1215573719.7697
$D^{0.6}[f(x)]$	29.5921	2785.1349	225061.4041	17031673.8254	1242432133.1620
$D^{0.7}[f(x)]$	25.5908	2589.4218	218152.2502	17000601.5354	1268602990.5955
$D^{0.8}[f(x)]$	22.0107	2401.1693	211091.8110	16947872.9956	1294005149.1848
$D^{0.9}[f(x)]$	18.8233	2220.6282	203902.7343	16873410.2899	1318557092.2480
$D^{1.0}[f(x)]$	16.0000	2048.0000	196608.0000	16777216.0000	1342177280.0000
			x = 9		-
$D^{\alpha}[f(x)]$	$\beta = 2$	$\beta = 4$	$\beta = 6$	$\beta = 8$	$\beta = 10$
$D^{0.1}[f(x)]$	71.1652	6116.0564	514078.7598	42778595.7525	3539393519.8682
$D^{0.2}[f(x)]$	62.2681	5688.3980	496508.8808	42461619.2210	3589346058.9210
$D^{0.3}[f(x)]$	54.2503	5278.4070	478780.4751	42096302.2859	3636474033.2261
$D^{0.4}[f(x)]$	47.0539	4886.3709	460942.5942	41683325.5086	3680613407.9176
$D^{0.0}[f(x)]$	40.6217	4512.4850	443043.9825	41223538.5607	3721604905.3594
$D^{0.0}[f(x)]$	34.8970	4156.8544	425132.8315	40717958.6896	3759294818.2299
$D^{0.1}[f(x)]$	29.8251	3819.4965	407256.5388	40167768.2083	3793535823.7890
$D^{0.0}[f(x)]$	25.3523	3500.3451	389461.4734	39574311.0023	3824187794.3588
$D^{0.9}[f(x)]$	21.4271	3199.2536	371792.7477	38939088.0550	3851118598.8500
$D^{1.0}[f(x)]$	18.0000	2916.0000	354294.0000	38263752.0000	3874204890.0000
$D\alpha[f(\cdot)]$	0.0	0.4	x = 10	2.0	0 10
$D^{-}[f(x)]$	p= 2 86.0275	p=4	p=0	p=8	p = 10
$D^{0.2}[f(x)]$	80.9373 75.9719	9224.1339	93/191.34/2	903333333.0407	10044492711.0090
$D^{\circ} [J(x)]$ $D^{0.3}[f(x)]$	64 2012	0409.2328	914/08.0192	90000900.0004	101049494202.0418
$D^{0.0}[J(x)]$ $D^{0.4}[f(x)]$	55 6020	7140.2406	821550 2061	02826612 1001	10104809937.0167
$D^{\circ} [J(x)]$ $D^{0.5}[f(x)]$	47 5766	6524 7069	700884 4567	92030013.1221	10120270323.8127
$D^{0.6}[f(x)]$	41.0700	5047 5709	750057 0422	88705506 2014	10120701904.1101
$D^{0.7}[f(x)]$	40.4455	5407 6150	711840 6187	86677700.0122	10121070094.3800
$D [J(x)] = D^{0.8}[f(x)]$	28 7601	4003 8235	673602 1325	84502059 6326	10081104675 2658
$\frac{D}{D^{0.9}[f(x)]}$	20.1091	4435 0334	636303 2126	82274255 1/05	10045696500 4460
$\frac{D}{D^{1.0}[f(x)]}$	24.0001	4000.0000	600000.0000	8000000 0000	100000000000000000000000000000000000000
レ [J (ル)]	20.0000		00000.0000	000000000000000000000000000000000000000	100000000000000000000000000000000000000

Table 6.1(continue) fractional derivative values for polynomial function $f(x) = x^{\beta}$

166 References

- [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, *Theory And Applications of Fractional Differential Equations*, (North-Holland Mathematics Studies), vol. 204, Elsevier Science, Amsterdam, 2006.
- [2] A. McBride, G. Roach (eds) *Fractional Calculus*, Research Notes in Mathematics,
 vol. 138, Pitman, Boston-London-Melbourne, 1985.
- [3] G. B. Arfken, H. J. Weber, F. E. Harris Mathematical Methods for Physicists: A Comprehensive Guide Academic Press, 7th edition 2012, 146-148.
- [4] B. Ross, Fractional Calculus and Its Applications, Lecture Notes in Mathematics,
 vol. 457, Springer-Verlag, New York, 1975.
- [5] F. Mainardi, considerations on fractional calculus: interpretations and applications, In: P. Rusev, I. Dimovski, V. Kiryakova (eds.), "Transform Methods and Special Functions, Varna 1996", IMI-BAS (Inst. Maths & Informatics, Bulg. Acad. Sci), Sofia, 1998.
- [6] I. Podlubny, Fractional Order System and Fractional Order Controllers, UEF 03-94, Inst. Exp. Phys, Slovak Acad. Sci., Kosice, 1994.
- [7] I. Podlubny, Numerical solution of ordinary fractional differential equations by
 the fractional difference method, Amsterdam, 1997, 507-516.
- [8] J. A. Tenreiro Machado, A probabilistic interpretation of the fractional order
 differentiation, FCAA 6, 1 (2003), 73-80.
- [9] K. B. Oldham, J. Spanier, *The Fractional Calculus*, Academic Press, New York
 1974.
- [10] K. Nishimoto (ed.), Fractional Calculus and Its Applications, Nihon University,
 Koriyama, 1990.
- [11] M. Axtell, M. E. Bise, Fractional calculus Application in Control Systems., IEEE
 1990, Nat. Aerospace and Electronics Conf, New York 1990, 563-566.
- [12] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999,
 62-88
- [13] Shaikh Tajuddin Nizami & al., A new approach to represent the geometric and physical interpretation of fractional order derivatives of polynomial function and its application in field of sciences, Canadian Journal on Computing in Math. 1, 1 (2010).
- ¹⁹⁸ [14] S. Das, Functional Fractional Calculus, Springer Verlag 2011, 10-11
- ¹⁹⁹ [15] V. Kiryakova, A long standing conjecture failed?, In: P. Rusev, I. Dimovski,
- 200 V. Kiryakova (eds.), "Transform Methods and Special Functions, Varna 1996",
- ²⁰¹ IMI-BAS (Inst. Maths & Informatics, Bulg. Acad. Sci), Sofia, 1998, 579-588.
- 202 Author's address:
- 203 Mohammad Hossein Tavassoli
- 204 Department of Mathematics and Computer Sciences,
- ²⁰⁵ Khomein Branch, Islamic Azad University, Khomein, Iran.
- 206 E-mail: Tavassoli.1359@gmail.com
- 207
- 208 Abbas Tavassoli
- 209 Department of Mathematics and Computer Sciences,

- 210 Payam Institute of Higher Education, Golpayegan, Iran.
- 211 E-mail: abs.tavassoli@yahoo.com
- 212
- 213 Mohammad Reza Ostad Rahimi
- 214 Golpayegan Branch, Islamic Azad University, Golpayegan, Iran.
- 215 E-mail: mrostadrahimi@yahoo.com